The Roche Immunoassay System

- true random access
- real-time STAT
- extensive range of high quality reagents
- primary or secondary tube sampling
- auto pre- and post-dilution
- flexible rack system
- continuous reloading of samples and reagents
- up to 10 on-line reagents
- ready-to-use reagents
- level detection
- integrated bidirectional interface
- one- or two-point recalibration
- positive ID of samples and reagents
- excellent sensitivity and specificity
- profile and conditional profile

ASSAYS (* in 1993)

<table>
<thead>
<tr>
<th>ONCOLOGY</th>
<th>AFP</th>
<th>CA 125 II</th>
<th>MCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCG</td>
<td></td>
<td>CEA</td>
<td>NSE</td>
</tr>
<tr>
<td>CA 19-9</td>
<td></td>
<td>Ferritin</td>
<td>PSA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RETROVIRUSES</th>
<th>Anti-HIV — 1/2</th>
<th>Anti-HIV - I/II</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBsAg</td>
<td>Anti-HBc</td>
<td>Anti-HBe</td>
</tr>
<tr>
<td>HBsAg Confirmatory</td>
<td>Anti-HBc IgM</td>
<td>Anti-HAV</td>
</tr>
<tr>
<td>Anti-HBs</td>
<td>Anti-HBe IgM</td>
<td>Anti-HAV IgM</td>
</tr>
<tr>
<td>Anti-HBs Standards</td>
<td>HBeAg</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TORCH</th>
<th>Toxo IgG & IgM</th>
<th>CMV IgG & IgM</th>
<th>Anti-HSV I/II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rubella IgG & IgM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THYROID</th>
<th>TSH</th>
<th>T3/T4</th>
<th>FT3*/FT4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FERTILITY</th>
<th>LH</th>
<th>Prolactin</th>
<th>Estradiol*</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSH</td>
<td>Progesterone*</td>
<td>Testosterone*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| MISCELLANEOUS | Anti-H pylori | IgE | Chlamydia |

Roche Products New Zealand Limited

8 Henderson Place Te Papapa Auckland
PO Box 12-492 Penrose Auckland NZ
Telephone: (09) 622-4000. Facsimile: (09) 622-4049.
TABLE OF CONTENTS

Original Article
Biochemical Effects of Inhaled Bronchodilators in Asthma
Robert WL Siebers, Carl D Burgess, Julian Crane, Richard Beasley
 127

Annual Report of the NZ Medical Laboratory Science Trust
 130

Applications for Grants to the NZ Med. Lab. Science Trust
 133

Continuing Education
- NZIMLS Special Interest Groups
 137
- Degree courses available in 1994
 158
- Postgraduate courses available in 1994
 161

Presidential Annual Report
 153

The Pacific Way
 156

Institute Business
 136

Letters to the Editor
 152

List of Advertisers in this Issue
 157

New Products and Services
 162

DIRECTIONS FOR CONTRIBUTORS

From Vol. 36 No. 1 all papers published will be in the form known as “Vancouver Style” or Uniform Requirements for Manuscripts submitted to Biomedical Journals. Full details may be found in the New Zealand Journal of Medical Laboratory Science, Vol. 45, No. 4, page 108 to 111 or from the Editor.

Intending contributors should submit their material to the Editor, M. Gillies, Microbiology Laboratory, Auckland Hospital, Auckland, New Zealand. Acceptance is at the discretion of the Editor, and no undertaking is given that any article will be published in a particular issue. The copy deadline for each issue is the first of the month prior to the month of publication.

ADVERTISER INQUIRIES

Inquiries regarding advertising rates and material for advertising should be addressed to the Advertising Manager, Trish Reilly, M.N.Z.I.M.L.S., 48 Towai St, St Heliers, Auckland 5, Phone 975 5057

DATES OF PUBLICATION

The months of publication for 1993 are March, May, August and November.
WITH AxSYM YOU GET FAR MORE THAN THE ULTIMATE IMMUNOASSAY ANALYSER.

YOU GET A NEW LAB TOO.

ABBOTT DIAGNOSTICS
P.O. Box 58-611 Greenmount, Auckland. Ph. 0800-656-233
Biochemical Effects of Inhaled Bronchodilators in Asthma

Robert WL Siebers, MiBiol, MRNZS, FNZIMLS, Carl D Burgess, MRCP, FRACP, MD, Julian Crane, FRACP, Richard Beasley, FRACP, MD.

Department of Medicine, Wellington School of Medicine, Wellington

Address for correspondence: Robert WL Siebers

Introduction:
Beta adrenoceptor agonists, such as salbutamol, terbutaline and fenoterol are widely used as bronchodilators in the treatment of asthma. Apart from their therapeutic pulmonary effects, they also have extra pulmonary effects due to their action on beta receptors. These extra pulmonary effects can be classified into haemodynamic, electrophysiologic and metabolic categories. The metabolic responses to inhaled bronchodilators can further be subdivided into two categories. Firstly, those concerned with the energy substrates such as glucose, insulin, free fatty acids and lactate. Secondly, those causing cellular shifts or excretion of cations, such as potassium and magnesium.

It is the purpose of this paper to briefly review the metabolic effects of inhaled bronchodilators and the resultant changes in biochemical parameters that may be seen in the clinical biochemistry laboratory.

Keywords:
Asthma, Beta Adrenoceptor Agonists; Bronchodilators; Biochemistry; Metabolism.

Glucose and Insulin

Beta-2 adrenoceptors are involved in beta agonist stimulation of glycogenolysis and gluconeogenesis. Thus nebulized salbutamol has been shown to increase plasma glucose in normal volunteers[1]. The increase in plasma glucose following beta agonists is dose related and has also been demonstrated in asthmatic subjects [2]. Insulin response to beta agonists is either due to direct stimulation of functional beta-2 adrenoceptors of the pancreatic islet cells, or due to beta agonist induced hyperglycaemia.

Clinically the increase in glucose and insulin due to beta agonist stimulation, may be of importance in the management of diabetic asthmatics where these drugs are given in high doses. Diabetics who are insulin dependant will be unable to respond to beta agonist induced hyperglycaemia as they are unable to increase insulin production.

Free Fatty Acids

Lipolysis is predominantly mediated by activation of the beta-2 adrenergic receptors in adipose tissue, leading to an increase in plasma free fatty acids (FFA). Marked increases in plasma FFA have been demonstrated after salbutamol inhalation in normal volunteers (1), but to a lesser degree in asthmatic subjects[3]. In asthmatic subjects the modest increase in plasma FFA is unlikely to be of clinical significance, but in asthmatic diabetic subjects it maybe, as increased FFA together with hypoxia has been implicated as a cause of cardiac arrhythmias[4].

Lactate

Lactic acidosis has been described in acute severe asthma[5]. It is most likely due to respiratory muscle over production of lactate. Beta agonist therapy has also been implicated in asthmatic lactic acidosis[6]. This is thought to be due to beta 2 adrenoceptor stimulation of muscle glycogenolysis, but the contribution of muscle lactate production could not be ruled out.

Preliminary studies from our group have shown that in recurrent normal volunteers and asthmatic subjects, inhaled beta agonists cause a rise in blood lactate (unpublished results). The increase in blood lactate concentration was dose dependant reaching a plateau after prolonged use, and was significantly higher with fenoterol when compared to salbutamol. Whether beta agonist enhanced lactate production (of up to 2.5 mmol/L) contributes to further respiratory muscle lactate production to clinically significant lactic acidosis in asthmatic subjects needs to be determined.

Potassium and Magnesium

Hypokalaemia mediated by inhaled beta agonists[7] is due to stimulation of Na⁺, K⁺-ATPase resulting in a shift of potassium from the extracellular to the intracellular space[8]. The commonly prescribed beta agonists, such as salbutamol, terbutaline and fenoterol demonstrate differences in their hypokalaemic responses in normal volunteers[9], and the effects are long-lasting[10]. These hypokalaemic response differences have also been demonstrated in asthmatic subjects [11, 12]. Fenoterol has constantly shown the greatest hypokalaemic effects[9-12], and may be implicated as one factor linking increased asthma mortality in New Zealand with the use of this drug[13]. However this has been disputed and some have suggested that all beta agonists are implicated in asthma mortality[14].

Beta agonist induced hypokalaemia is enhanced by the concomitant use of other drugs causing hypokalaemia, such as diuretics[15] and theophylline[16]. Additionally, subjects with pre-existing lowered plasma K⁺ concentrations, such as found in ischaemic heart disease or diarhoea, and those participating in strenuous sporting activities causing adrenaline induced hypokalaemia; are at greater risk of developing ventricular arrhythmias whilst taking beta agonists acutely.

Both potassium and magnesium depletion can play a role in the generation of ventricular arrhythmias. Intravenous infusion of beta agonists lowers serum magnesium[17], but inhalation does not cause a fall in serum magnesium[2], and unpublished observations. The lowering of serum magnesium induced by intravenous infusion of beta agonist is predominantly due to increased urinary excretion of magnesium[8].

The lowering of serum magnesium and potassium by beta agonists thus differ in their mechanisms. Magnesium is eliminated by excretion from the body, while potassium is temporarily shifted from the extracellular to the intracellular compartment. The latter happens mainly in the muscle compartment[8] and cannot be demonstrated in easy accessible cells with functional Na⁺, K⁺, -ATPase pump units such as the erythrocyte[19], contrary to earlier reports[20].

Other Biochemical Parameters

Relaxation of bronchial smooth muscle, induced by beta agonist administration is mediated through cyclic AMP. Various studies have demonstrated a rise in plasma cyclic AMP [9,21,22] after beta agonist administration, which is dose dependant and greatest with fenoterol. Although plasma cyclic AMP levels are correlated with improvement of pulmonary function[22], cyclic AMP also has a positive inotropic effect on the heart.

Asthmatic subjects with reduced blood selenium concentrations and glutathione peroxidase activity appear to have more severe asthma[23]. Reduced selenium in asthmatic subjects may lead to a decrease in the reduction of 12-hydroperoxideoctadecanoic acid (part of the arachidonic acid lipoxigenase pathway), which in turn stimulates the

Conclusions:
Although beta agonist therapy has therapeutic benefits during acute attacks of asthma, metabolic side effects can occur. Changes in blood chemistries caused by beta agonist therapy in asthmatic subjects may be seen in the clinical biochemistry laboratory including potassium, glucose, FFA, lactate, insulin and cyclic AMP. These changes are listed in Table 1. The newer, longer-acting beta agonists, such as formoterol and salmeterol, also show biochemical changes as seen with fenoterol, salbutamol and terbutaline. These changes may be acutely affect blood selenium concentrations or glutathione peroxidase activity[24].

Acknowledgements:
The authors thank Maureen Gordon for secretarial assistance. Studies from our unit mentioned in the paper were supported by the Health Research Council of New Zealand, the Lottery Board (Medical) of New Zealand, the Wellington Medical Research Foundation, Fisons and Glaxo. Burgess was supported by the New Zealand Lottery Board, Fisons and Health Council of New Zealand, and J Crane is a senior research fellow of the Health Research Council of New Zealand.

References:
Why IL builds complete blood gas systems. Not just products.

With advanced analytical instruments, optimised reagents, controls and supplies, and full technical support, the IL blood gas program is a complete, fully integrated system of products and services.

It's all made by one reliable name in blood gas, and it's all designed with a single objective: to produce the most reliable, accurate blood gas data, in the quickest amount of time, for every single sample.

IL's unique continuous, 1-point calibration, plus sequential sample introduction and sample preheating, further guarantee that your results are always accurate and ready to any request with stat speed.

The IL blood gas family includes basic blood gas, systems that provide both blood gas and electrolytes/haematocrit from the same sample, and a CO-Oximeter system that interfaces with IL blood gas analysers to provide up to 35 measured and calculated parameters on a single printout.

And now, the IL blood gas family features a new basic blood gas analyser, BG3, which can be upgraded in the field to any version with electrolytes and haematocrit.

The IL blood gas program also includes educational materials, proficiency surveys, technical support and fast instruments service.

Find out more about the comprehensive, cost-effective IL blood gas program. For more information contact Coulter today on (09) 828 6621 or (09) 828 6698.

Call us today on (09) 828 6621 for more information. Coulter Electronics (NZ) Ltd, PO Box 20266, Glen Eden, Auckland.
Again the Science Trust has continued to maintain its position over the current year and thanks to the generous support of Abbott Diagnostics we have been able to offer a substantive Study Award for those involved in the area of Infectious Disease Serology.

The trustees are disappointed in the relatively few number of applications from Institute members seeking assistance in furthering their education. The Trustees are very aware of the current economic and political situation and the uncertainty and pressure that most laboratories throughout the country are working under. We acknowledge that as a result many laboratory personnel have little opportunity for travel or to undertake post graduate research or development projects. The Trustees are certain that provided The Trust is able to maintain its financial situation and slowly consolidate, when the improvement comes, which it surely will, the Trust will be in a very good position to assist the development of Medical Laboratory Science in New Zealand.

The Trustees are pleased to confirm that Abbott Diagnostics Ltd have agreed to again offer the Award for 1994 and on behalf of the membership of the New Zealand Institute of Medical Laboratory Science sincerely thank Abbott Diagnostics for this very positive declaration of support for Medical Laboratory Science in New Zealand.

Trustees:

The trustees are Mr J.S. Beattie of Wellington, Mr C.H. Campbell of Palmerston North, Mr B.T. Edwards of Christchurch, Mr D.J. Philip and Mr W.J. Wilson of Auckland. At the recent Annual Meeting of the Trustees Mr W.J. Wilson was elected Chairperson for the next term.

The Trustees gratefully acknowledge the work and efforts of Mr D.J. Philip as the Trust's Chairman since its establishment in 1988.

Grants:

In the 1992-93 year four Grants were approved from the Abbott Study Award. Three to allow Technologists to attend the 1993 NZIMLS Annual Scientific Meeting in Christchurch, and one to allow a Technologist to attend the 1993 Australasian Retrovirus Conference to be held in Adelaide. The Trustees would like to record their disappointment that there were so few applications for this Award.

The Trust invites applications for 1994 Grants and reminds members of the Institute that Application Forms are available from the Executive Officers of the Institute and the Trust.

Grant and Awards available for 1994 are—

1994 Abbott Study Award, closing date 31 January, 1994
NZMLST Travel Grant, closing date 27 May, 1994
NZMLST Research and Development Grant, closing date 27 May, 1994
NZMLST 1994 Medical Laboratory Science Annual Scientific Meeting Travel Grant, closing date 27 May, 1994.

Unless there are very extenuating circumstances Grants are not considered at other times of the year.

W.J. Wilson
CHAIRMAN
N.Z. MEDICAL LABORATORY SCIENCE TRUST (INC)
BALANCE SHEET
AS AT 31 DECEMBER 1992

Accumulated Funds:
 Balance as at 1 January 1992 $12,862.00
 Add excess income 776.92
 ___________________________ _______________________
 Represented by: $13,639.03
 A.N.Z. Banking Group; Current Account

Auditor’s Report:
To the Trustees of the N.Z. Medical Laboratory Science Trust
I have examined the financial records of the above Trust and have received such explanations as I required and have carried out such procedures as I considered necessary. I confirm that the Balance in the Trust’s current account is $13,639.03.

In my opinion, the above statements give a true and fair view of the financial transactions of the Trust for the year ended 31 December 1992.

David R Gordon
Hon Auditor
Palmerston North
19 January 1993

N.Z. MEDICAL LABORATORY SCIENCE TRUST (INC)
INCOME AND EXPENDITURE ACCOUNT
FOR YEAR ENDED 31 DECEMBER 1992

INCOME

Interest Received 510.92
Donations:
 Abbott 5,000.00
 Examiners 820.00
 Other 20.00
 ___________________________ _______________________
 5,840.00

EXPENDITURE
Grants:
 N.I.C.E. Conference 1,000.00
 R. Austin 1,750.00
 G. Storey 500.00
 S. Henry 1,750.00
 G. Findon 574.00
 ___________________________ _______________________
 5,574.00

Excess Income 776.92

$6,350.92
$776.92
New Zealand health professionals trust Amerlite and Amerlex products from Kodak for quality results in immunodiagnostics. Very soon, Kodak's guarantee of quality will be extended with the introduction of the Ektachem range of dry chemistry analysers.

From now on when making the decision on the best random access analyser - it is a dry argument.

When it comes to laboratory efficiency - Ektachem delivers with quality results, faster turnaround times and increased productivity. Ektachem is easy to use 24 hours per day, offering a 40-plus test menu with complete capabilities for stat, routine, esoteric or backup testing. Added benefits include walk-away operation, six monthly calibration and a guaranteed cost per reportable result.

As Kodak New Zealand grows to meet your individual needs, you can be assured of excellence in product quality and support. Talk to Kodak today about Ektachem, the future in dry chemistry analysers.

Talk to Kodak Clinical Diagnostics today about Ektachem, call (09) 377 8950 and key in extension 8724

EKTACHEM... ABOUT TO MAKE YOUR DAY EASIER

Clinical Diagnostics
APPLICATION FOR GRANTS

In 1987 the New Zealand Institute of Medical Laboratory Science (Inc), responding to a change in the direction of our society from "State Funding" to "self support" and "user pays", and as there was no organisation with the specific responsibility for supporting and fostering the aims and ambitions of the New Zealand profession of Medical Laboratory Science, established the Medical Laboratory Science Trust, with the following principal objectives —

(a) To promote and assist research by members of the NZIMLS.

(b) To promote and assist the education of members of the NZIMLS by the provision of grants of money and the organisation of lectures, demonstrations and tutorials.

(c) To promote and assist in the provision of equipment, travel and accommodation for members of the NZIMLS to further their research and education.

(d) To promote and assist in the provision of course fees, enrolment fees, study bursaries and book purchases for members of the NZIMLS to further their education and research.

(e) To promote and assist in the publication of any research by members of the NZIMLS.

(f) To co-operate with other bodies or organisations, both within New Zealand and overseas, having objects in whole or in part similar to the objects of the Science Trust.

(g) To promote, obtain and achieve any of the objects of the Science Trust by or through the facilities available at any Hospital, University, or recognised medical, veterinary, scientific or research institute or other organisation and make grants of money, apparatus, equipment or otherwise, as the Trust Board may think fit.

The Trustees appointed by the Institute are Mr. John S. Beattie of Wellington, Mr. Colin H. Campbell or Palmerston North, Mr. Barrie T. Edwards of Christchurch, Mr. Desmond J. Philip, and Mr. Walter J. Wilson both of Auckland.

The Science Trust invites applications from financial members of the NZIMLS who wish support —

(1) To enable them to attend the 49th Annual Scientific Meeting of NZIMLS in Hamilton from 24 to 26 August, 1994.

(2) To request travel expense assistance to attend other meetings or undertake study within the above objectives.

(3) To enable them to undertake a research or development project.

All practising Fellows, Associates and Members of the NZIMLS are eligible to apply, applications will be considered on expected benefits from the project, travel etc and where appropriate consideration for the members' participation in promoting Medical Laboratory Technology. An application form for (1), attending the 1994 NZIMLS Annual Scientific Meeting is on the following page.

Application forms for (2) and (3) are available from the following —

Executive Officer,
NZIMLS,
P.O. Box 3270,
CHRISTCHURCH.

Executive Officer,
Medical Laboratory Science Trust,
C/- Pathology Department,
Palmerston North Hospital,
PALMERSTON NORTH.

Please indicate the type of application form required.

Applications must be on the official Application Form and be received by the Executive Officer, NZIMLST, no later than 5 pm on Friday, 27 May, 1994.

W.J. Wilson
Chairman
MEDICAL LABORATORY SCIENCE TRUST
MEDICAL LABORATORY SCIENCE TRUST
GRANT APPLICATION FORM FOR
(1994) NZIMLS ANNUAL SCIENTIFIC MEETING

Date: ______________________________

NAME: ______________________________

ADDRESS: (Business): _________________________

PRESENT POSITION: _________________________

PROFESSIONAL EXPERIENCE: (Positions held etc) _________________________

Do you intend to submit a paper for presentation at the Scientific Meeting?:

YES ☐ NO ☐

Note: A condition of the grant is that papers presented at the Meeting will be submitted to the NZIMLS Journal for publication. If “yes”, on what subject?

Attendance at the (Christchurch) Scientific Meeting will assist in my development in Medical Laboratory Science by: (in less than 200 words)

(Continue on another page if required).

Nature and value of support sought: _________________________

Member of the NZIMLS YES ☐ If “yes”, what category? _________________________

NO ☐

Have you ever held office in any position in either a branch or the Council of the NZIMLS?

YES ☐ NO ☐

If “Yes”, give details: _________________________

(Over)
Have you been or are you involved in assisting the activities of the Institute, eg a member of sub-committee, examiner etc?

YES □ NO □

If “yes”, give details: __

I agree to abide by the terms of the Grant and the decision of the Medical Laboratory Science Trust Board of Trustees.

Signed: ____________________________ Date: ____________________________

If successful the above applicant has my support and permission to attend the NZIMLS Annual Scientific Meeting in Hamilton, 24-26 August, 1994.

Signed: ____________________________ Date: ____________________________

(Charge or Principal Technologist or Laboratory Director)

Applications close with the —

Executive Officer,
Medical Laboratory Science Trust,
C/- Pathology Laboratories,
Palmerston North Hospital,
Private Bag,
PALMERSTON NORTH

at 5pm on Friday, 27 May, 1994.
INSTITUTE BUSINESS

President
Dennis Reilly
Diagnostic Laboratory, Auckland

Vice President
Shirley Gainsford
Valley Diagnostic Laboratory, Lower Hutt

Secretary/Treasurer
Paul McLeod
Microbiology Dept., Nelson Hospital

Council
Leanne Mayhew, Anne Paterson, Chris Kendrick, Jim Le Grice, Les Milligan

Executive Officer
Fran van Til
PO Box 3270, Christchurch
Phone/Fax (03) 313-4761.

Please address all correspondence to the Executive Officer, including Examination and Membership enquiries.

Membership Sub-Committee Report — August 1993

Since the May meeting there have been the following changes:

<table>
<thead>
<tr>
<th></th>
<th>19/08/93</th>
<th>04/05/93</th>
<th>23/02/92</th>
<th>11/11/92</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membership</td>
<td>1135</td>
<td>1237</td>
<td>1242</td>
<td>1244</td>
</tr>
<tr>
<td>less resignations</td>
<td>16</td>
<td>6</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>less G.N.A.</td>
<td>10</td>
<td>2</td>
<td>8</td>
<td>19</td>
</tr>
<tr>
<td>less deletions</td>
<td>—</td>
<td>118</td>
<td>3</td>
<td>—</td>
</tr>
<tr>
<td>less deceased</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>less duplications</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>plus applications</td>
<td>66</td>
<td>20</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>plus reinstatements</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>1178</td>
<td>1135</td>
<td>1237</td>
<td>1242</td>
</tr>
</tbody>
</table>

Composition
Life Member (Fellow) 10 12 12 12
Life Member (Member) 8 8 5 5
Fellow 20 20 20 20
Member 686 686 679 678
Associate 372 325 436 443
Non-practising 56 58 59 68
Honorary 26 26 26 26
Total 1178 1135 1237 1242

Applications for Membership
J. NEWTON, IEHPS; C. Kinney, Dunedin Medlab; T. WARNOCK, Christchurch Serology; J. HOWES, Wellington, Hist; D. RODGERS, Medlab South; R. GERITI, Medlab South; L. THOMAS, Dunedin School of Dentistry; S. CORSBIE, Christchurch, Biochem; T. Wells, Napier Medlab; M. CHAMBERS, Napier Medlab; L. HAUTAPU, Palmerston North, Medlab; C. ROWBERRY, Palmerston North, Cytology; M. BRYHAM, Middlemore, Hist; C. DAVIES, Dunedin, Hist; A. VILE, Palmerston North, Hist/Cytol; J. DAVIES, Dunedin, Micro; M. CHEALE, Auckland, Hist; M. MCKAY, Wellington Medlab; T. SMITH, Dannevirke; L. BUTLER, Middlemore, Haem; N. WILLIAMS, Timaru, Cytol; B. DE RIDDER, Wellington Medlab; P. DUFF, Taranaki, Micro; K. VICKERS, New Plymouth Medlab; T. GOURLAY, Northland pathology; S. NUTSFORD, IEHPS; D. HAWKINS, Dunedin Medlab; A. VAN DER PUTTE, Dargaville; L. DEMLER, Wanganui Diagnostic; K. DEW, Waikato, Hist; E. COOFY, University of Otago; K. STANK, Cardinal; A. MOTA, Thames, Micro; J. COOPER, Taranaki, Micro; C. BRODIE, Wellington, Haem; D. GREEN, Auckland Medlab; M. MARKWICK, Auckland Medlab; L. DAVIES, Auckland Medlab; D. CASEY, Diagnostic; E. BENGE, Diagnostic; E. GOOD, Diagnostic; C. DONACHE, Diagnostic; R. CHRISTOPHERS, Diagnostic; T. ANDERSON, Christchurch, Viro; R. PODMORE, Christchurch, Micro; C. McKENZIE, Palmerston North, Biochem; R. MATHESON, Northland, Biochm; H. HEALEY, Christchurch, Trans Sci; G. DAVIES, Auckland Medlab; K. SMITH, Palmerston North Medlab; G. TEAHAN, Wellington Medlab; I. EPPS, Palmerston North, Haem; A. COPELAND, Valley Diagnostic; E. FORDE, Dunedin Medlab; S. HEYWORTH, Hamilton Medlab; B. O'KEEFE, ARBC; R. ANDERSON, Wanganui Diagnostic; R. VAUGHAN, Green Lane, Micro; C. VAN WILDEREN, Waikato, Micro; S. ASHORTH, Palmerston North, Micro; M. KHAN, Lornnex Holdings; L. CAHILL, Southland, Micro; C. SIES, Christchurch, Biochem; D. BANGE, Waikato, Trans Sci; F. MASSEY, Hutt, Haem; J. HILLAS, Ebo Group.

Gone No Address
V.F. DEEMING; H.E. HUTCHINGS; C.A. VAN POMEREN; T.L. BULLING; L.L. FALLOW; I. McDOUGALD; C.M. RASMUSSEN; S. ADAM; M.J. WILDBORNE; A.M. O'CONNOR.

Resignations
A.L. GRIMMER; G.F. BEATTIE; R.S. BISHOP; H.J. NORTON; G.F. DAVIS; L.C. DOOLEY, W.M. CROWTHER; C.D. JAGGS; G.L. NICHOLLS; J.S. THOMSON; L.A. EDEN; V.A. TROTTER; K.S. WILLS; B.D. EDWARDS; F.E. HUTCHISON; T.L. PHILLIPS.
NZIMLS CONTINUING EDUCATION

SPECIAL INTEREST GROUPS

Liftout
Minicon® Concentrators

For rapid enrichment of biological solutions.

Simplify the preparation of urine, CSF, amniotic fluid and other samples for analysis by electrophoresis, immunoelectrophoresis etc.

Eg. Intensify Bence Jones proteins in urine.
Increase antibody and antigen titers

No set-up or technician attention required.

For information about these and other useful amicon microconcentrators please contact your New Zealand distributors

Amicon

Innovators in membrane technology.

New Zealand Medical & Scientific Limited

90 Mays Road, Auckland. N.Z. P.O. Box 24-138, Royal Oak, Auckland. Telephone: (09) 634-1036 Fax: (09) 634-5146
Conference

Attendance at this year's NZIMLS Annual Scientific Meeting was down a little on previous years — perhaps a reflection of the uncertain political and economic environment for health workers. For those that managed to attend, Christchurch laid on some really lovely weather, fun-filled social events and excellent scientific papers. I found I simply couldn't get to all those I was interested in because there were so many and occasionally they coincided. The abstracts of the transfusion science papers are published below for those of you who couldn't make it to Christchurch to hear them in person.

The TSSIG met while we were all together in Christchurch. We discussed, and are working on, several items which we hope will benefit many of you.

Examiners

Towards the end of each year the TSSIG sends a list of names of potential examiners to the NZIMLS Council (for QTA and Specialist Level exams) and the MLTB (for Certificate level). We include people who are registered medical laboratory technologists and usually have themselves passed the Specialist level exam in transfusion science. At Conference this year, the NZIMLS Council sponsored a workshop for examiners and moderators. It was very successful and widely judged to be most useful, so we hope more such workshops will be run in the future. We are also looking forward to the imminent publication of some Guidelines for examiners and moderators. Examiners do a very demanding job for very little reward and deserve the thanks of all those who sit their exam.

QTA Syllabus

The NZIMLS is in the process of making some changes to the QTA syllabus to incorporate a common core component which will be the same for all QTA candidates irrespective of discipline. This will include such basics as safety, preparation of solutions and the use of some general equipment. The TSSIG are taking the opportunity to revise the transfusion science component, ready for reprinting next year. If you have any comments you would like to make, please feel free to pass them on to me for consideration as we revise this syllabus.

The NZIMLS are also making some changes to the format of the QTA examination. Details will be released after this year's examination, to avoid confusion.

1994 Conference Workshop

We have already begun planning for a half-day workshop at the 1994 Annual Scientific Meeting to be held in Hamilton, on the topic of 'New Technologies'. This includes such products as gel or bead chromatography cards, which are now beginning to be marketed in New Zealand.

Transfusion Medicine Audio Updates

Several new topics are now available. Please see the separate box which lists topics and serves as an order form.

Massey BMLSc

1994 will see fourth year students from both Otago and Massey Universities in our laboratories for clinical laboratory experience. We were pleased to meet with Chris Kendrick (transfusion science and haematology tutor for the Massey course) and look over the plans for his students' practical requirements. Many of us aren't yet sure what to expect of the BMLSc graduates or what will be expected of us, but I look forward to them as the culmination of many years of work to gain degree status for our qualification.

NICE Weekend

For all those NICE people who want to start planning now, here is advance notification that next year's NICE weekend will be held on 9-10 April at Waikato. We hope to hold a golf tournament on the preceding Friday, for those who can manage a day off work.

Newsletter

This newsletter is the major way for most of us to maintain contact with what is going on in transfusion medicine in New Zealand. If anything interesting or challenging is happening to you, why not share it with the rest of us? Just drop me a line at the contact address above and I'll arrange for publication.

LITERATURE REVIEWS

Le(a-b-) and Heart Disease

"The Lewis Blood Group — A New Genetic Marker of Ischemic Heart Disease", by Hans Hein et al, appeared in the April 1992 issue of the Journal of Internal Medicine. Of 3400 Danish men aged 53 to 74 studied, 9.6% were Le(a-b-). The risk of fatal ischemic heart disease was 340% greater in the Le(a-b-) group, and the risk of any ischemic heart disease was 60% greater.

The authors note a resemblance between their findings and Reaven X Syndrome, which is also associated with ischemic heart disease, hypertension, pathological lipid changes and diabetes. Interestingly, both the Lewis gene and the insulin receptor gene are on the short arm of chromosome 19.

Wristband Identification Errors

The information on a patient's wristband is vital to the identification process for specimen collection and safe transfusion. Wristband errors can contribute to ABO-incompatible transfusion reactions or cause significant delays in transfusion. This study evaluated wristband identification problems in 712 hospitals.

The median total error rate was 2.2%. Approximately half the errors (49%) were due to a missing wristband. Other errors included more than one wristband containing different information (17%), erroneous data (9%), illegible data (6%), and patient wristbands containing another patient's information (0.5%).
Reviewed by: Sheryl Khull, Transfusion Laboratory, Wellington Hospital.

Although the format remains familiar to those of us who have kept “Mollison” at our right hand for years, the ninth edition has quite a lot of information not found in the eighth (1987) edition, mostly in areas of transfusion medicine which have seen significant recent developments.

The immunology of leucocytes and platelets is considered in detail, as are therapeutic aspects of transfusions of leucocytes, platelets and plasma fractions.

The longest chapter in the book is that devoted to infectious agents transmitted by transfusion, with some mention of over a score of them.

New techniques, such as collection of stem cells, monoclonal assays, cloning of A and B transferases, the manual polybrene test, flow cytometry and storage of frozen platelets are all to be found in this new edition of this excellent book.

Reviewed by: Sheryl Khull, Transfusion Laboratory, Wellington Hospital.

Dr Dacie last dealt with this topic in 1962, in Part II of The Haemolytic Anaemias — a volume which has retained its place as a reference work in spite of its age.

Substantial advances have taken place in the last thirty years in our understanding of the structure and regulation of antibodies and the genesis of autoimmune diseases. These, together with the growing understanding of the complexity of human blood group antigens, the complement system, and the way in which the body deals with antibody-affected cells, have all contributed to the great increase in size of this work.

This book covers the whole history of our understanding of the autoimmune haemolytic anaemia from the beginning of the century up to present knowledge, recognising that a great deal is still not fully understood — in particular the reason why certain individuals suffer from autoimmune haemolytic anaemia while the great majority of us do not.

Topics which are not covered in this book include haemolytic disease of the newborn, drug-induced immune haemolytic anaemias, other secondary autoimmune haemolytic anaemias, and paroxysmal nocturnal haemoglobinuria. The author plans to cover these in his next work, “The Haemolytic Anaemias — Volume Four”.

ABSTRACTS OF TRANSFUSION SCIENCE PRESENTATIONS at the NZILMS Annual Scientific Meeting August 1993.

"WE NEED BLOOD NOW!"
Dr Chris Curry FACEM, Emergency Department, Christchurch Hospital.

Transfusion of blood in the Emergency Department is a rare event. It is embarked upon only in life-threatening situations of severe and ongoing bleeding. Examples include stab wounds to the heart and major vessels, major lacerations and amputations, internal bleeding from severe trauma, and non-traumatic gastrointestinal haemorrhage.

In Christchurch, the Emergency Department usually receives prior warning by radio of the impending arrival by Ambulance of a patient in a critical condition from acute bleeding. Alerting the Blood Bank and acquiring a Pre-allocated Patient Number usually ensures a prompt group and crossmatch.
• Epiclone® ABOs
• Epiclone® Anti-Ds
• Epiclone® AHGs
• Rh and Rare antisera

Distributed by

MEDICA PACIFICA LTD

P.O. Box 24-421
Royal Oak, Auckland
NEW ZEALAND
Telephone: 09-625 5261 Fax: 09-625 4396
Mobile 025 974 913
1977 First installation, Brooke Army Hospital.
1978 E.coli susceptibility test released.
1979 Enteral/Intracutaneous ID test kit.
1980 Computer control unit and computer interface.
1981 Susceptibility program, Vitek II.
1982 Susceptibilities by MIC, Gram pos. ID kits.
1983 Gram-neg. susceptibility kits, Non-fermentative Gram-neg. bacilli ID.
1984 Expanded ID, Gram pos. susceptibilities by MIC.
Computer enhancements, present reports.
Information Management System.
1988 VIDAS (Vitek ImmunoDiagnostics Assay System). Expanded antimicrobial testing.
1990 Enhanced IMS and Quality Control.
1991 VIDAS assay release, Expanded ID's and susceptibilities.
Expanded bidirectional interface.
1992 Pharmacy Laboratory's Modular (P-L M) ACT. Introduction of non-ultracentrifuge, rapid disc, capability. IMS streamlining work flow.

The Future at Work Today
Automated systems for identification and antibiotic susceptibility testing.

Vitek
A Step Ahead
The future is built into every Vitek.

From the beginning, our systems have always been ahead of their time. No matter what year you acquired your Vitek or plan to acquire your first Vitek, our record of commitment stands clear. Every Vitek enhancement, past, present and future is available to your laboratory. It's our philosophy, our commitment to putting the needs of the customer first.

Yesterday's Vitek has grown to meet today's needs. Today's system is designed with future potential built in. We're committed to see to it that every Vitek is the latest thing in the years ahead.

Call TOLL FREE: 0800 733 599 for a free analysis of your current system.

bioMérieux
Med-Bio Enterprises Ltd.
Unit A, 32A Birmingham Drive, Christchurch. Phone 0-3-338 1020, Fax 0-3-338 0028
Thromborel® S - the Behring PT Reagent with an ISI of 1

Rely on the facts: 10 years of consistent, high-quality thromboplastin, for 500 reagent lots.

Thromborel® S, Behring’s human thromboplastin. Features:

Reliability:
For 10 years, the most sensitive PT reagent for screening and monitoring therapy.

Precision:
Mean ISI value of 1.08 for 500 lots CV 3.8%; precise calculation of the INR.

Reproducibility:
CV’s of 2.9% for the normal value of 500 lots during the last decade.

For efficiency and speed, the PT and all other clotting tests can be run on the new, fully-automated Behring Fibrinitimer A.

Behring Diagnostics
Division of Hoechst NZ Ltd
CPO Box 67
Auckland
Phone (09) 570702
Fax (09) 5708511
TRANSFUSION MEDICINE AUDIO UPDATES

A continuing education programme presented on audio tape

AVAILABLE THROUGH THE TRANSFUSION SCIENCE SPECIAL INTEREST GROUP.

<table>
<thead>
<tr>
<th>Service</th>
<th>Price (NZIMLS members)</th>
<th>Price (non-members)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tape and transcript</td>
<td>$6.00 per topic</td>
<td>$3.50 per topic</td>
</tr>
<tr>
<td>Tape only</td>
<td>$4.00 per topic</td>
<td>$2.00 per topic</td>
</tr>
<tr>
<td>Transcript only</td>
<td>$3.50 per topic</td>
<td></td>
</tr>
</tbody>
</table>

Topics currently available:

- **1090** Solid Phase Immunohaematologic Testing — Red Cells & Platelets
- **0491** Monoclonal Reagents — What Should We Expect From Them?
- **0991** Total Quality Improvement — A Lifetime Goal
- **0592** An Update on Hepatitis C
- **0692** Quality Assurance in Hospital Transfusion Medicine
- **0792** Human T-Cell Lymphotrophic Viruses
- **0892** Approaches To Bloodless Surgery
- **0992** Transfusion Errors — Causes and Prevention
- **1092** Transfusion Safety — Towards Eliminating Identification Errors
- **1292** Current Status of Plasma Exchange and Cytapheresis
- **0193** What to Expect During an OSHA Inspection
- **0293** Prevention of Rh Immunization
- **0393** The 15th Edition of AABB Standards: Revisions and Implications
- **0493** Red Cell Crossmatch : Evolution, including the Use of the Computer
- **0593** The Gel Test
- **0693** Managing Standard Operating Procedures
- **0793** Managing Risk in Transfusion Medicine

New topics:

- **0293** Prevention of Rh Immunization
- **0393** The 15th Edition of AABB Standards: Revisions and Implications
- **0493** Red Cell Crossmatch : Evolution, including the Use of the Computer
- **0593** The Gel Test
- **0693** Managing Standard Operating Procedures
- **0793** Managing Risk in Transfusion Medicine

Order from Sheryl Khull, Secretary, TSSIG, Transfusion Laboratory, Wellington Hospital.

NZIMLS member name: _______________________________________
Address: __

Cheque enclosed / official order form attached

Tapes and transcripts / Tapes only / Transcripts only

Continuous subscription for issues
 commencing with issue:

or specify topics: _______________________________________

DNA ANTIBODY WORKSHOP, TUESDAY 24 AUGUST

The workshop was held on Tuesday 24 August at the Christchurch School of Medicine. Prior to the workshop, sample RIA kits, ELISA kits and Crithidia slides were sent out for evaluation. The results were returned, collated and simple statistics applied. The collated results were sent out to all participants to review before coming to the workshop.

The workshop began with a brief presentation from Dr John O'Donnell (Clinical Immunologist) about the clinical significance and relevance of double-stranded DNA antibodies. The results, statistics and correlation graphs were presented.

After morning tea, Rob McEvoy (QAP Flinders Medical Centre) presented information regarding the quality control programmes and used examples to illustrate the results obtained by participants using Crithidia, Farr or ELISA methodologies.

A discussion regarding the various techniques was held and an agreement was reached that laboratories measuring antibodies to double-stranded DNA should standardise on a Farr assay.

The following consensus statement has been sent out to all workshop participants, including commercial representatives.

CONSENSUS STATEMENT FROM A WORKSHOP ON THE MEASUREMENT OF ANTIBODIES TO DOUBLE-STRANDED DNA

48TH ANNUAL Scientific Meeting of the
New Zealand Institute of Medical Laboratory Science
Christchurch, August 24-27, 1993

On 24 August 1993, a workshop on measurement of antibodies to double-stranded DNA was held. At that workshop, there was consensus that laboratories measuring antibodies to double-stranded DNA should standardise on a radioimmunoassay (Farr technique).

BACKGROUND

Measurement of high avidity antibodies to double-stranded DNA is useful in the diagnosis and monitoring of patients with systemic lupus erythematosus (SLE). Clinicians recognise that this test has high specificity but low sensitivity. That, in the presence of high titre double-stranded DNA antibodies, a diagnosis of SLE is highly likely.

Conversely, they recognise that this test is only likely to be positive in perhaps 30-50% of patients with SLE. Because of the test's specificity, clinicians will pay particular regard to a positive test and will weight it very highly in the evaluation of patients, either in terms of establishing a diagnosis, or in terms of monitoring a possible relapse of disease. There are three techniques commonly used to measure antibodies. Historically, the gold standard measurement technique has been the Farr assay. Over the years this technique has been modified, but there is general agreement that, using this technique, antibodies with high avidity are detected. Several studies have demonstrated the diagnostic utility of such antibodies in both diagnosis and monitoring disease relapse. ELISA assays have developed to eliminate the use of radioactive material. The clinical association and utility in detecting antibodies using ELISA techniques has not been well defined.

There is general agreement that ELISA assays detect both high and low avidity antibodies to double-stranded DNA, and therefore, the clinical utility of the test is relatively poor compared to the Farr assay (ie. it may detect double-stranded antibodies to DNA, but not necessarily those associated with SLE).

The third technique uses Crithidia luciliae slides and an immunofluorescence technique. Frequently this assay is used as a screening test, and if positive, some laboratories will then assay antibodies to double-stranded DNA, utilising either an RIA or an ELISA method. Its use in this regard may not be justified as it is less sensitive than either the Farr or ELISA techniques.

Tests used to screen should be highly sensitive but not necessarily specific.

WORKSHOP SAMPLES

A total of 14 different laboratories tested slides and kits. All labs received at least two different Crithidia slides (12/14 received 3 different kinds), six laboratories received one of two different RIA kits, ten laboratories received one or both of two different ELISA kits.

Twenty-five serum samples (a mixture of strong positive, borderline positive and negative from Christchurch Immunology Unit) were aliquoted and sent to the participating laboratories. Results of the tests were collated and simple statistics applied.

1. Crithidia assay

When compared with both the RIA and ELISA techniques, the Crithidia assay is neither sensitive nor specific for antibodies to double-stranded DNA. There is no justification for its use as a screening test and it is unlikely to provide a clinician with useful results in terms of monitoring disease activity.

2. ELISA assay

There was no correlation between the results of the two ELISA techniques, or between either of ELISA techniques and the RIA techniques.

3. Farr assay

Antibodies detected by radioimmunoassays have been...
Introducing a new reticulocyte methodology using COULTER® VCS technology on COULTER STKS and MAXM haematology systems.

Coulter's patented VCS technology has evolved to provide a new screening methodology that automates and standardises the reticulocyte count, giving you specific information on red cells. VCS technology differentiates reticulocytes from mature red cells, white cells and platelets.

Now you can identify reticulocytes quickly, accurately, and cost effectively. The Coulter® MAXM, MAXM with autoloader and Coulter® STKS will be offered with the ability to use the Coulter reticulocyte methodology.

This methodology is an easy upgrade option for your existing MAXM and STKS instruments.

Designed for both low and moderate-volume testing, the method combines the superior cell classification of VCS technology with a reagent system and dedicated software to count reticulocytes in a fast, easy and precise way.

Using a proprietary reagent and software system some 32,000 erythrocytes are counted in 60-90 seconds using a STKS or 90-120 seconds for a MAXM.

The method requires a simple 2-step sample preparation procedure. Instruments may be switched from CBC/Diff mode to Retic mode (or back) in less than one minute, hence there is minimum disruption to the analyser’s routine function.

A procedure that’s easier and faster than any method of its kind.

Coulter reticulocyte technology - the continuing evolution of VCS.

For more information on reticulocyte technology call Coulter today on (09) 828 6621 or (09) 828 6698.
used in studies of disease predictability and activity. In the survey undertaken, there was a reasonable relationship between the results of both RIA methods, although there was concern expressed as to the different reference ranges quoted, despite reported calibration on the same WHO standard.

Joanne MacDonald, NZRMLT; Deborah Willis, NZRMLT; John O'Donnell, Clinical Immunologist; Immunology Unit, Canterbury Health Laboratories, CHRISTCHURCH HOSPITAL.

IMMUNOLOGY FORA, THURSDAY 26 AUGUST

Immunology of Pregnancy and Reproduction

This was the first session for the day and set the standard for the high calibre of speakers and interesting topics that were covered in all the Immunology sessions.

The first talk was an interesting overview of the topic by Dr Paul Gatenby (Department of Clinical Immunology, Royal Prince Alfred Hospital, Sydney). This is Professor Gatenby's main area of interest and he provided an expert introduction to the subject.

The next talk, "Immunocoception: A potential technique for possum control in New Zealand", was presented by Janine Duckworth from Landcare Research. She provided an interesting talk about the possible role of immunological techniques in producing an effective and "environmentally friendly" method of possum control. This work has only recently started in New Zealand, but similar methods for fox control in Australia have shown promise.

The direction was then shifted back to "human patients" as Joanne MacDonald (Immunology Unit, Christchurch Hospital) described the sperm antibody test currently used at Canterbury Health Laboratories, and how the results can be used in a clinical situation.

An interesting case study was presented on a patient who had positive circulating sperm antibodies in her serum and follicular fluid. The IVF unit was able to use this information to help in their protocol for the couple. Unfortunately, as yet, there has not been a happy ending — no pregnancy has resulted.

The last talk in the session was by Dr Peter Benny (IVF Unit, Christchurch Hospital) who talked about the costs, both financial and emotional, of artificial reproduction.

Immunological Techniques

The second session on Thursday morning consisted of three speakers.

Professor Paul Gatenby discussed the clinical utility of a number of immunological tests and their relevance to various autoimmune diseases; while the presence of double-stranded DNA (dsDNA) antibodies was important for the diagnosis of SLE, their usefulness in monitoring was more limited — mainly during pregnancy, or where central nervous system or renal disease was involved.

Very high levels of rheumatoid factor were normally found only in sub-acute bacterial endocarditis, Sjogren's syndrome and mixed cryoglobulinaemia; moderate levels of rheumatoid factor were not characteristic of rheumatoid arthritis.

He also looked at the importance of the clinician understanding the strengths and weaknesses of the various tests when interpreting the results — especially when the result is an unexpected one.

Dr O'Donnell (Immunology Unit, Christchurch Hospital) presented two case studies in which immunological test results were important in the clarification of a diagnosis.

Jill Smith from Kabi Pharmacia Diagnostics (PO Box 175, North Ryde, NSW 2113) looked at allergy in general, and specifically at the CAP system developed by Pharmacia for detecting allergen-specific IgE mediated allergy.

Pharmacia claims a 15% greater detection rate of allergic patients due to increased binding of allergen to the solid phase, compared with the traditional disc support.

Other tests using the CAP system are the measurement of Eosinophilic Cationic Protein (ECP) which shows a clear correlation with cellular injury in severe asthma; tryptase measurements and gliadin antibody measurements were described also.

GENERAL IMMUNOLOGY FORUM

There were three very different papers presented in this session.

The first was a talk by Rob McEvoy (RCPA, QAP Pty Ltd, Department of Clinical Immunology, Finders Medical Centre, Bedford Park, South Australia) who is involved in running the Immunology Quality Assurance Program (QAP). He showed examples of the types of results that are obtained for various samples and methods.

The QAP can also be used to highlight poor performance of particular techniques and enable participants to compare themselves with their peers in Australasia.

Rob showed examples of how they would like to present the data in the future, including graphs where different methods superimposed on the overall results.

Rob also made a request that if anybody comes across an interesting result and is able to obtain a large volume of blood from the patient, they would love to receive it!

Professor Frank Griffin (Associate Professor, Microbiology Department, University of Otago) provided a very entertaining talk about the good ("protective") and bad ("allergic") of immune reactions.

In New Zealand there is very strict control over the deer farm industry and it is extremely important that any infection with M. bovis is detected. Professor Griffin showed examples of his "cartwheels" demonstrating different patterns for disease and for protective immunity.

Dr John McKay (Immunology Scientific Officer, Auckland Hospital) provided a brief talk about the experience in the Auckland Hospital Virology/Immunology laboratory with the automated computer-assisted programme for the Behring nephelometer to measure low levels of albumin and IgG.

ANTIPHOSPHOLIPID SYNDROME FORUM

The antiphospholipid syndrome forum, held on Thursday afternoon, was a very interesting session with Professor Gatenby summarising the historical aspects of antiphospholipid antibodies and explaining how the advent of the ELISA assay enabled improved clinical correlations to be made with laboratory results. Importantly, that different assays define overlapping, but different antibody families.

The possible role of a co-factor, beta 2-glycoprotein, was also discussed.

Dr David Heaton, Haematologist from Canterbury Health Laboratories, presented a range of case studies that illustrated various aspects (both clinical and test results) of the antiphospholipid syndrome.

John McKay, from Auckland Hospital, discussed the family of autoantibodies that make up the group known as antiphospholipid antibodies (namely anticardiolipin antibodies, lupus anticoagulant and biological false positive results seen in syphilis testing).

He pointed out the importance of performing both anticardiolipin and lupus anticoagulant assays before a diagnosis of antiphospholipid syndrome can be excluded.

He also looked at the requirements necessary for differentiating antiphospholipid antibodies from those seen in treponemal infections.

Without exception, all the papers presented at the Immunology sessions of the conference were interesting, enjoyable and covered a wide range of topics. All contributors of both oral and poster presentations are to be congratulated on the high standard achieved.

Joanne MacDonald, NZRMLT, Immunology Unit, Canterbury Health Laboratories, CHRISTCHURCH HOSPITAL.

CONGRATULATIONS CHRISTCHURCH

The Annual Scientific Meeting was a tremendous success and I should like to extend my thanks, on behalf of the
Network, for the not inconsiderable part played by our ISIG members from Canterbury Health, namely Mike Southern on the organising committee, Deborah Willis and Joanne MacDonnel for the DNA workshop and the Immunology forums. They demonstrated great imagination and organisational skills in providing such a varied programme.

And of course, beautiful Christchurch herself, decked out in all her Spring glory, provided such a wonderful setting. 1993 will go down as one of the more memorable NZIMLS conferences.

SPECIAL INTEREST GROUP

Convenor: Rennie Dix
Contact Address: C/- Anns Cooke, Laboratory Training Centre, Building 18, Auckland Hospital, Park Rd, Auckland.
Fax (09) 307-4939

LABORATORY SEMINAR

VISIT by DR MARILYN MANCO-JOHNSTON

Date: Thursday, 11 November 1993
Time: 1345 — 1700 hrs
Venue: Seminar Room
Level 7
Auckland Starship Children’s Hospital

The Auckland Haemostasis Group and the Haematology Special Interest Group invite you to attend a laboratory seminar. Dr Marilyn Manco-Johnston is the Associate-Professor of Paediatrics at the University of Colorado School of Medicine; Director of the Mountain States Regional Haemophilia Centre, Denver, Colorado, United States of America.

Her major scientific interests are:
- Neonatal and paediatric thrombosis
- Ontogeny of the Protein C system
- Mechanisms of hypercoagulability in infants of diabetic mothers
- Haemophilia
- Paediatric AIDS

The programme will be comprised of short presentations by laboratory staff, leading to significant time for questions and discussion on the subject presented.

Subjects for presentation:

- Aspects of Blood Collection in Neonates and Children
 — microtechniques; cord bloods
- Reference Ranges in Neonates and young children
 — use of published data
 — cord bloods
 — premature / full-term
- Aspects of Heparinisation in Neonates
- DIC / Laboratory Results in Neonates
- Laboratory Investigation of Thrombosis with particular reference to neonates and children
 — protocols and testing procedures
 — incidence and relevance of Lupus Anticoagulant
- Other paediatric laboratory issues
 — diagnosis of difficult Hereditary Spherocytosis

Further questions and/or topics for discussion may be forwarded to:
Ms Janene Madgwick
Technologist-in-Charge
Haemostasis
Haematology Department
Auckland Hospital
Private Bag 92024
Auckland

Afternoon Tea will be provided by the Haematology Special Interest Group.
1/ Meeting opened by Shirley Gainsford with a welcome to those attending and an introduction to committee members.

Shirley Gainsford Convenor
Janet Wilson Treasurer
Sarah Thirlwall Secretary
David Riley Journal club coordinator
Mary Carr
Welcome to our latest committee member:
Jan Deroles-Main
Medical Diagnostics
Palmerston North.

2/ Review of February meeting.

a) Date: March 1994
Janet noted that it would be difficult for those from the South Island to attend the MSIG seminar, especially as many would be attending the South Island seminar.

b) Venue: Taupo yacht club
Unfortunately this is booked for March 1994 and a new venue will be found.

c) Accommodation: Taupo is abundant in accommodation. It was noted that Auckland and Wellington CHE's have houses in Taupo which may be used and sleep many.

d) Programme: Discussions followed regarding the type of speakers we wanted to attract and whether a theme was necessary. General consensus was to keep it casual to attract speakers from all levels. Regional MSIG's may like to put forward speakers. It was suggested that a letter be distributed requesting areas of interest or possible topics for discussion and from this speakers would be sought and a programme drawn up.

e) Advertising: Newsletters will be distributed via the NZIMLS journal, newsletter and via Microbiology departments to ensure as many as possible are informed and welcomed.

4) There is no NZIMLS conference in 1995. This provides an opportunity to host a larger scale microbiology seminar, possibly in Wellington. Suggested topic: Infectious diarrhoea.

5) Shirley noted that the NZIMLS institute discourage the seeking of sponsorship for SIG seminars. Being approached by companies offering sponsorship is acceptable.
LETTERS TO THE EDITOR

Dear M Gillies

During the weekend of 23-24 April 1994, there will be a reunion of past and present laboratory staff who were in the diagnostic departments of the Otago University Medical School and Dunedin Hospital.

While the organising committee have the names and contact addresses of a large number of previous staff there are many addresses unknown.

We are certain that this letter will inform many previous staff who will have an interest in attending the reunion, as well as making the necessary arrangements to attend.

Please register your interest with:
Mrs Jan Parker
Surgical Services Manager
Dunedin Hospital
Your assistance in this matter is greatly appreciated.

JOHN MORGAN
For the Organising Committee

TRIBUTE TO GEORGINA

Georgina Skorepova whose homeland was Czechoslovakia, came to New Zealand after World War II, to escape the desolation of war-torn Europe and establish a new life here. She obtained a position as a Laboratory Assistant in the Immunology Department at Auckland Hospital in the early 1970s.

The Charge Technologist at that time was Andor Fischmann, a fellow European from Hungary, who had also made New Zealand his home after the war.

Those were the grand days of serology, before the microtiter or automation, when doing eighty rheumatoid titres involved about 30 test tube racks, 300 glass test tubes and a “Cornwall syringe” to dispense the reagents manually into each tube. The days these tests were done did not leave much bench space for anything else.

The Rose-Wealers, as the Sheep Cell Agglutination Tests (SCAT) were called then, were Georgina's specialty, and we betide anyone who borrowed any of the equipment that she needed when she set it all up the night before, ready for testing the next day.

Georgina worked in Immunology until the early 1980s. These were times when the technology was beginning to change rapidly. Microtitre techniques came in; Georgina did not exactly approve of some of the 'new-fangled innovations', but like the true professional that she was, she adapted and soon could perform all the serological tests in their new formats.

She always got to work at least an hour before everyone else, to get organised for the day. If you had a busy workload for the day you might come to work and find that Georgina had set things up for you too. That was just her way of being part of the team.

Georgina decided one day that she needed a change of scene and much to our dismay (because we could not imagine life without her) she went to work for the New Zealand Dairy Board in their laboratory, where she tested dairy products for protein and fat content etc. She worked there until she reached retiring age.

Georgina died in Auckland Hospital (her hospital) on Saturday, 2 October 1993, after a short illness. She will be remembered with love and affection by those of us who worked with her in the Wallace Block laboratory.

Always a staunch supporter of the NZIMLT as it was known then, she treasured and maintained contact over the years with the friends she made in the laboratory — we were her New Zealand family, the Immunology Department her home base. She is part of the history of our discipline and our profession. We shall miss her.

Gillian McLeay, Virology/Immunology Laboratory, AUCKLAND HOSPITAL.

KODAK EKTACHEM DT60 DRY CHEMISTRY ANALYSER

2 Additional Modules (DTSC and DTB) are included giving 32 blood chemistries for analysis. This 4 year old machine is fully supported by Kodak NZ. Advantages over wet chemistry analysers are: Consistency of stability, portability and reliability, new price is $24,500. Asking price $7750.

Enquiries please contact Choo Archer, Centre for Advanced Medicine, 3 Warborough Ave, Epsom.
Tel (09) 524-7743. Fax 524-7745.
Paul McLeod, President NZIMLS

It doesn't take me to tell you about the turmoil in the changes in healthcare of the past five years. However, turmoil and uncertainty, which always accompany extensive change can be tolerated if it means we can achieve the goals set for us. What I fear most is that health care in this country is in danger of becoming a political football, along similar lines to that we currently are witnessing with the issue of Superannuation.

The last two years have been extremely difficult for everyone involved with health and we in the laboratory are no exception. We have seen our managers come and go in reshuffles of management structures. We have seen our elected Area Health Board representatives removed. Many laboratories have seen two, three or even four changes in the management structures above them. I haven't counted them out, but a commentator recently said that we have had nine Ministers of Health during the last eleven years. It is my guess that even if the National Party is re-elected in November that we will see this number extended to ten.

If the government loses the upcoming election, then it is likely that the health services will yet again be subjected to more changes. If this were to be the case, it is possible that the health services could collapse. I believe that I speak for most when I say that we have had enough change; we have had enough politics, we have had enough of being pushed around and blamed for everything that is perceived as being bad in healthcare by our politicians and the news media. It is time now to look at what has been put in place and to quietly and efficiently set about to make it work. It is quite possible that if the budget infusions for the past couple of years are continued we could look at the environment in one year's time and see a dramatic reduction in the pressure on the system.

Since our profession was founded some fifty years ago we have always been a subservient group to the pathologists. Up until recently the profession was probably appropriate, but now the environment has changed. We have a health delivery structure which will allow us if we choose, to settle a contract for services with the Regional Health Authorities. If we meet their requirements, we can function in our own right. We have never been able to do that before. By achieving TELARC accreditation, by being a Registered health professional group, and being on the eve of seeing our first graduates emerging from the universities, surely we are in a strong position and must meet all the RHA requirements.

It is unclear to me what the environment would be for our profession should there be a change of government later this year. The Labour Party has already announced that it would introduce significant changes again. This seesawing of policy must stop before it reaches any entrenched momentum. If Labour do regain power, then I plead on behalf of our profession, to give us some time to see if these new health structures can be made to be successful. If we cannot, then so be it.

I am now coming to the conclusion of three years as your President. I must say that not only have I enjoyed the presidency enormously, but also the preceding nine years on the Council as well, and I would like to highlight some of the major changes that have occurred during this time.

Without any doubt, in my mind, the major achievement has been the commencement of our degree, the Bachelor of Medical Laboratory Science at both the University of Otago and Massey University. Also it has been announced that the Auckland Institute of Technology has successfully applied to commence a degree programme in 1994. Even with the potential of over supply, we should not allow that to detract from the fact that our profession is now fully recognised by three tertiary institutions to degree level. There has been much discussion about the predicted usefulness of the new graduates coming through the degree education programmes. It is difficult, if not impossible, at this stage to compare these graduates with those who went through on our old apprenticeship style training system. Each will be quite different with their own strengths and weaknesses. It is important however, to have the correct attitude towards the degree graduates. They will be like nothing we have had before. They will challenge us without doubt, but, they are our future. Unlike the apprenticeship style graduates, they may not be up to the same level of bench efficiency on day one, but there again, they may be. But what is far more important is that they will bring fresh ideas, the leaders, the Masters and the Doctorates in the future. Our old training system could never have achieved that. Do not judge prematurely the degree graduates. One thing is certain; they will be a breath of fresh air and a shot in the arm to laboratory services throughout the country.

Another major development within our profession has been the separation of industrial issues from the professional body with the establishment of the New Zealand Medical Laboratory Workers Union. I was personally involved in industrial issues under the umbrella of the Institute. I remember those days as being high pressure and very exciting. However, I was a strong supporter for the separation of the industrial and the professional roles, as I could see some conflicts in philosophy. A good example of this is the policy we are soon to discuss on Near Patient Testing. The Institute and the Union are to a large extent in agreement on many issues, but by our very nature we have different views on others. I believe that these differing philosophies are best dealt with by different organisations.

Another major development with the Institute that I wish to mention has been the appointment of an Executive officer and the establishment of an office for the Institute. You will all be well aware of the work that Barrie Edwards did for the Institute as Secretary. However, we all knew, that this level of commitment could not last forever. Barrie's departure occurred within weeks of me taking up the position of President; this being due to promotion at his laboratory. The Council was aware that the workload of the secretary was too great for an honorary role. Just prior to the 1990 AGM at Invercargill, the council appointed as Assistant Executive Officer, Fran van Til. A few weeks later with Barrie's resignation received, Fran was "promoted" to Executive Officer. Needless to say, the following few months were a challenge but we got through, and the Institute now has, what I believe, is a very efficient and professional office.

Three years ago, the council prepared a plan on what it hoped to achieve. With the union established to look after industrial issues, the Council could focus itself on the professional aspects. Number one goal was the establishment of a university based degree. A Code of Ethics was another goal, along with a definition on the role and function of laboratory assistants. Also included in the plan was the development of a policy for "Near Patient Testing" and this will be discussed at this meeting. Other goals have been added since then, for example, to establish an ongoing competency programme for the licensing of registered technologists. This goal obviously requires the support of the Medical Laboratory Technologists Board, which has been forthcoming, and plans are now well in hand to introduce a programme in the near future.

Another significant development in recent years has been the establishment of the Special Interest Groups. The people
involved in the administration of these groups have to be thanked and congratulated. Their dedication and commitment is tremendous and the entire profession is enhanced by their efforts. The Council will continue to support these groups both administratively and financially as much as is possible. I certainly look forward to the continued enthusiasm for the various disciplines and no doubt they will be supported by the members attending their various courses, seminars and workshops. If attendance numbers are anything to go by, then these programmes are seen as highly relevant by the profession. If this Institute is to survive, which I strongly believe it must, then it is vital that our profession and its numerous disciplines remain coordinated and together. The Special Interest Group concept is pivotal to this continued survival, so it is crucial that the Council, SIG committees and the members all support the activities. Equally, the SIG activities should not be all at the expense of the Annual Scientific Meeting. The difficulty the organising committee has had attracting delegates to this meeting is hopefully an aberration, rather than a trend for the future.

This year, the Council membership is in for some change. Geoff Rimmer, as the Auckland Regional Representative, is not seeking re-election. Geoff has been a valued member of the council and he will be missed. I wish him well and thank him for his dedication over the years which took up many hours of his family life looking after the thankless task of the membership files.

You have a new President about to take office. I know that Dennis Reilly will be very successful and I know that he will receive the tremendous support that I have been lucky to have had from both the Council and the membership. By being elected unopposed, Dennis has obviously got the support of the members and I wish him well. The Institute is also soon to have a new Vice President which will unfortunately result in the departure of one of the current council members. Ted Norman as Central North Island Representative has been a valued member of council, being involved in the portfolios of Overseas Aid, the Rules Committee and on the Board of Management for the Massey University degree. Ted, like Shirley Gainsford, is standing for the Vice Presidency. Shirley is standing down as the Secretary/Treasurer. Apart from the demands involved with that position, Shirley has always been readily forthcoming in offering her services and expertise especially in the area of education. Consequently, she has been the Council representative on various committees, including the Auckland Institute of Technology Advisory Board. To both Ted and Shirley, on behalf of the Institute I thank you for your time and dedication and to whoever is successful, congratulations on the position of Vice President.

I welcome Anne Paterson back on the Council and equally to the incoming Auckland representative, congratulations and welcome. The vacant position of Secretary/Treasurer did not appear attractive to anyone. It did not take too much arm-twisting for me to agree to stand, however, I look forward to this new role with more trepidation than the presidency!

To the other council members re-elected and to our Executive Officer, I thank you all very much for your support and I know that you will offer at least the same to Dennis. I have enjoyed every moment of my presidency. There have been exciting times, disappointing times and challenging times. But always, it has been exhilarating. Finally, to all the members, I thank you for your support and encouragement during the last three years.

This coming year marks the 50th year of our Institute. We have a lot to be proud of. We have come a long way and at last, we seem to have an environment in which we can fully realise our independence. Hopefully within the next year or so, we will be able to say that we have made it!
...the innovation continues

7 fold revolving nosepiece
Turnable mechanical stage
Scoposcan
PC-aided photography
Electronic focus display
Electronic focus controls

Your personal microscope system

AUCKLAND
Tel (09) 443-5867
Fax (09) 444-7314

WELLINGTON
Tel (04) 568-9440
Fax (04) 568-8991

CHRISTCHURCH
Tel (03) 358-7410
Fax (03) 358-9598
health care instead of relying on scarce resources of Government.

An important aspect of the programme is to introduce a "bottom up" approach to health planning and management, giving people at the village level responsibility for determining the services that are needed and how they should be implemented. The Village Development Committee typically comprises a dozen members, including a village magistrate/counsellor, and other chosen respected figures. It plans and monitors community development activities. The Committees are taught the mathematical principles of data collection, data analysis and basic accounting. They are also taught management and organisation skills so that they can develop project plans, project budgets and project monitoring systems. They learn how to undertake household surveys to determine the priority needs of the members of their community. They brainstorm ways of raising capital and the most appropriate types of projects to implement, given available community resources.

NEW SERVICE TO THE SOUTH PACIFIC HEALTH CARE MARKET

A new service to the South Pacific Healthcare market is how best to describe Medica Pacifica Ltd. George Bongiovanni, the owner of the company, is no stranger to the South Pacific. He has spent the past 10 years servicing this region for Bayer Diagnostics as their Sales and Marketing Manager. Medica Pacifica currently represents CSL, Organon Teknika, Bayer Diagnostics, Fisher and Paykel Healthcare, just to name a few companies. Laboratories from the South Pacific have the opportunity to use the vast experience and contacts George Bongiovanni has throughout New Zealand and Australia for product, pricing and technical information. Plans are in progress to open an office and warehouse in Suva, Fiji, when the necessary permits are approved. For further information write to P.O. Box 24-421 Royal Oak, Auckland, New Zealand or Fax 00-64-9-625-4396.

Fiji Medical Technologist Seminar, New Zealand delegates

Left to Right:
Gary Lord, Anneeta Chand, Peter Huggard, Kevin McLoughlin, Mr Don McKay, New Zealand Ambassador to Fiji, Mary Ann McLoughlin, Clare Murphy, Ross Anderson, Liz Fox, Kirk Dillon, George Bongiovanni, Mike Lynch.

List of Advertisers in this Issue

ABBOTT Diagnostic Division ... page 126
Biorad .. page 163
Boehringer Mannheim NZ... outside back cover
Coulter Electronics (NZ) Ltd... page 129 and 148
DiaMed .. inside back cover
Hoechst ... page 145
Kodak NZ Ltd.. page 132
LabSupply Pierce ... page 155
Med-Bio Enterprises Ltd... page 144
MEDICA PACIFICA LTD ... 141
Murex Diagnostics Ltd .. 160
NZ Medical and Scientific Ltd.. 138
Roche Products NZ Ltd.. inside front cover
Medical Laboratory Science

Degree Courses Available in 1994

Massey University

The BMLS Degree

(Information extracted from BMLS degree course handbook.)

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.101</td>
<td>Organic and Biological Chemistry</td>
</tr>
<tr>
<td>62.101</td>
<td>Cell Biology</td>
</tr>
<tr>
<td>57.102</td>
<td>Computers and Information Systems</td>
</tr>
<tr>
<td>61.130</td>
<td>Biometrics</td>
</tr>
</tbody>
</table>

Plus 3 or 4 papers selected from the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.102</td>
<td>Inorganic and Physical Chemistry</td>
</tr>
<tr>
<td>24.101</td>
<td>Physics 1(a)</td>
</tr>
<tr>
<td>24.102</td>
<td>Physics 1(b)</td>
</tr>
<tr>
<td>39.107</td>
<td>Applied English</td>
</tr>
<tr>
<td>60.103</td>
<td>Methods of Mathematics</td>
</tr>
<tr>
<td>99.101</td>
<td>Biology of Animals</td>
</tr>
</tbody>
</table>

An elective paper

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.201</td>
<td>Biochemistry (a)</td>
</tr>
<tr>
<td>62.201</td>
<td>Biology and Genetics of Microorganisms</td>
</tr>
<tr>
<td>62.281</td>
<td>Medical Laboratory Practice and Microbiology</td>
</tr>
<tr>
<td>94.233</td>
<td>Introductory Mammalian Physiology</td>
</tr>
<tr>
<td>22.282</td>
<td>Biochemistry for Medical Lab. Science</td>
</tr>
<tr>
<td>62.253</td>
<td>Human Genetics</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.381</td>
<td>Clinical Biochemistry</td>
</tr>
<tr>
<td>62.381</td>
<td>Medical Microbiology and Immunology</td>
</tr>
<tr>
<td>62.382</td>
<td>Transfusion Science and Haematology</td>
</tr>
<tr>
<td>62.383</td>
<td>Histological Technique, Cytogenetics and Medical</td>
</tr>
<tr>
<td></td>
<td>Cytology</td>
</tr>
</tbody>
</table>

Fourth Year

Two of the following theory papers to be taken in conjunction with the two relevant practical work papers:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.481</td>
<td>Clinical Biochemistry</td>
</tr>
<tr>
<td>62.481</td>
<td>Medical Microbiology</td>
</tr>
<tr>
<td>62.482</td>
<td>Haematology</td>
</tr>
<tr>
<td>62.483</td>
<td>Transfusion Science</td>
</tr>
<tr>
<td>63.484</td>
<td>Immunology and Virology</td>
</tr>
<tr>
<td>62.485</td>
<td>Histology and Medical Cytology</td>
</tr>
<tr>
<td>62.488</td>
<td>Practical Work A</td>
</tr>
<tr>
<td>62.489</td>
<td>Practical Work B</td>
</tr>
</tbody>
</table>

* Students will not normally be allowed to enrol for the fourth year course until they have passed the papers specified for the first three years of the degree.

University of Otago

The BMLSc Degree

(Information extracted from BMLSc prospectus.)

The degree course is four years of full-time study.

Year 1 is a first year Health Sciences course similar to Medicine, Dentistry and Pharmacy which can be taken at any university in New Zealand offering the prescribed course.

Years 2 and 3 are spent full time at the Otago Medical School in Dunedin.

Year 4 consists of two semesters in selected medical laboratories in New Zealand to gain service experience, combined with an academic course from the Distance Teaching Unit of the University of Otago.

I. Schedule of Papers

Year 1

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 111</td>
<td>Foundation Biology A: Biology of Cells</td>
</tr>
<tr>
<td>BIOL 115</td>
<td>Biology for the Health Sciences</td>
</tr>
<tr>
<td>CHEM 101</td>
<td>Chemistry</td>
</tr>
<tr>
<td>ENGL 124</td>
<td>Language and Communication</td>
</tr>
</tbody>
</table>

Additional Papers at 100 level from Mathematics, Physics or Statistics

Year 2

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANAT 213</td>
<td>Anatomy</td>
</tr>
<tr>
<td>BIOC 211</td>
<td>Biochemistry IIA</td>
</tr>
<tr>
<td>BIOC 212</td>
<td>Biochemistry IIb</td>
</tr>
<tr>
<td>MICR 211</td>
<td>General Microbiology</td>
</tr>
<tr>
<td>PHSL 211</td>
<td>Introductory Physiology A</td>
</tr>
<tr>
<td>PHSL 212</td>
<td>Introductory Physiology B</td>
</tr>
<tr>
<td>MELS 299</td>
<td>Medical Laboratory Practice</td>
</tr>
</tbody>
</table>

A one-week full-time course at the Otago Polytechnic during a University vacation.

Year 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MICR 311</td>
<td>Health Microbiology</td>
</tr>
<tr>
<td>MELS 301</td>
<td>Clinical Biochemistry</td>
</tr>
<tr>
<td>MELS 302</td>
<td>Haematology and Transfusion Science</td>
</tr>
<tr>
<td>MELS 303</td>
<td>General Pathology</td>
</tr>
</tbody>
</table>

Year 4

Two of the following

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MELS 401</td>
<td>Advanced Clinical Biochemistry</td>
</tr>
<tr>
<td>MELS 402</td>
<td>Advanced Clinical Microbiology</td>
</tr>
<tr>
<td>MELS 403</td>
<td>Clinical Virology</td>
</tr>
<tr>
<td>MELS 404</td>
<td>Cytogenetics</td>
</tr>
<tr>
<td>MELS 405</td>
<td>Cytopathology</td>
</tr>
<tr>
<td>MELS 406</td>
<td>Haematology</td>
</tr>
<tr>
<td>MELS 407</td>
<td>Histopathology</td>
</tr>
<tr>
<td>MELS 408</td>
<td>Transfusion Science</td>
</tr>
<tr>
<td>MELS 409</td>
<td>Immunology</td>
</tr>
</tbody>
</table>
21st World Congress of Medical Technology

Hong Kong

Organised by

Hong Kong Medical Technology Association

Under the auspices of

International Association of Medical Laboratory Technologists

This is to invite you to the 21st World Congress of Medical Technology scheduled on 25th to 29th July, 1994 at the University of Hong Kong.

The Congress with the theme, Advanced Technology Advances Health, signifies the goal of congregating leading medical technologists, scientists, health and medical professionals to exchange common interests in promoting health care and present the latest scientific achievements in the following disciplines:

AIDS
Cellular Pathology
Clinical Chemistry
Clinical Immunology
Clinical Mycology
Education & Training
Electron Microscope
Haematology
Information Technology

Laboratory Management
Medical Bacteriology
Molecular Biology
Parasitology
Quality Assurance
Transfusion Science
Transplantation Science
Tropical Diseases
Virology

In addition to plenary lectures, symposia, free papers and poster sessions, workshops are also organised. There is no place like Hong Kong for a meeting. It offers an amalgamation of the efficient cosmopolitan city and the exotic ambience of the Orient. It is also the legendary shoppers’ paradise.

Those who wish to receive the 2nd announcement and further information are welcome to contact the Congress Secretariat. Looking forward to meeting you in the Pearl of the East!

Congress Secretariat: 21st World Congress of Medical Technology, C/o Travel Advisers Ltd, Room 1006, Silvercord, Tower 1, 30 Canton Road, Tsimshatsui, Hong Kong. Phone: (852) 375 8321, Fax: (852) 375 1978 or (852) 375 7893.
Improved anti-HCV detection for more secure Hepatitis C screening

With an expanded range of antigens that features proteins derived from human serum, the new Murex anti-HCV EIA introduces 4th generation HCV screening for even greater confidence in test results.

Increased sensitivity: The microtitre based assay incorporates recombinant antigens representing core, NS3 and NS5 regions of HCV plus NS4 synthetic peptides to increase sensitivity without compromising specificity.

Enhanced specificity: Baculovirus recombinants are expressed without the use of carrier proteins thereby reducing the risk of false positives.

Greater reassurance: Sample Addition Monitor in the diluent, a unique first for Murex, and colour-coded reagents enable confirmation at-a-glance that all wells have been treated correctly before each processing step begins.

With no requirement for predilution and an incubation time of only two hours, this 4th generation assay can be used for high or low volume screening. The test is complemented by another first for Murex—the new Wellcozyme HCV Western blot confirmatory assay.

At Murex, the commitment to innovation in viral diagnosis continues.
POSTGRADUATE COURSES AVAILABLE IN 1994

THE DIPLOMA IN MEDICAL LABORATORY SCIENCE DipMLS

The DipMLS is a postgraduate diploma available to registered Medical Laboratory Scientists. It can be taken extramurally, part time over three or more years. This course will be offered for the first time in 1994, and probably only once more after that.

Students who do well in the DipMLS may then proceed to an MSc by thesis alone. This would require one year of full time research or two to three years of part time research. The regulations for the DipMLS are listed below:

THE DIPLOMA IN MEDICAL LABORATORY SCIENCE DipMLS

The personal programme of study of every candidate shall require the approval of the Academic Board. Approval will normally be granted for programmes which are in accordance with the Course Regulations. For general provisions affecting their programmes of study, students are referred to the General Regulations governing Matriculation, Enrolment, Terms and Examinations.

Note: This course is designed primarily for part-time extramural students and not all the papers will be available each year. Candidates will normally be expected to complete the DipMLS within three years of first enrolling for part-time study, but, in special circumstances, it can be completed internally in one year for full-time students.

Course Regulations
1. Candidates for the Diploma in Medical Laboratory Science shall have fulfilled one of the following conditions:
 (a) be a registered Medical Laboratory Scientist and have at least two years experience post registration.
 (b) have been admitted ad eundem statum as entitled to proceed to the Diploma.

Note: Bachelor of Medical Laboratory Science graduates will not be permitted to enrol in the DipMLS.

2. The programme of study of every candidate shall require the approval of the Academic Board.

3. Candidates shall follow an approved programme of study, and pass the examinations as prescribed in these regulations.

4. Candidates who complete the programme of study with sufficient merit may be awarded the diploma with Distinction.

5. To qualify for the Diploma a candidate is required to gain at least 90 points from the papers and research project listed in the schedule to these regulations provided that no more than three of the 14 point papers are included.

Note: With the approval of the Academic Board, and provided the candidate has achieved sufficiently high grades in the DipMLS and has at least 5 years experience as a registered Medical Laboratory Scientist, a completed programme of study for the DipMLS may be used as a prerequisite for admission to the course for the degree of MSc (without Honours; see MSc Regulation 11).

Note: Students who wish to continue an MSc must do a Research Project (XX.688) in their DipMLS. (The research project will normally be conducted in the Laboratory where the student is employed, using existing equipment and materials. These costs maybe the responsibility of the student.)

B. Amend MSc regulation:
11. (a) Candidates who have been admitted to the degree of Bachelor of Science with Honours, or have been awarded the Diploma in Science or the Diploma in Plant Science or the Diploma in Medical Laboratory Science with 5 years experience as Registered Medical Laboratory Scientists may be awarded the degree of Master of Science (without Honours) on presenting a satisfactory thesis, and/or passing the examinations in other approved work. In cases of sufficient merit, the degree may be awarded with distinction.

Prescriptions for Subjects

22.681 Biochemistry 14 points

Study of cellular processes at the molecular level: metabolism and chemistry of cell constituents, energy metabolism, regulation of metabolism.

62.681 Biology and Genetics of Microorganisms 14 points

An integrated course of study which provides:
 (a) an introduction to bacteria, fungi, viruses and to the study of these organisms.
 (b) an introduction to microbial genetics which serves to introduce molecular genetics and gene manipulation.

* not actually in Calendar

62.682 Human Genetics 14 points

A course on different aspects of genetics that are important in human biology. The impact of human genetics on human society will also be discussed. Topics include: genes and gene defects, family studies, behavioural genetics, population genetics, genetic engineering, ethical issues.

<table>
<thead>
<tr>
<th>Schedule of Subjects</th>
<th>Prerequisites</th>
<th>Restrictions</th>
<th>Points</th>
<th>Year Available*</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.681 Biochemistry</td>
<td></td>
<td>22.201</td>
<td>14 points</td>
<td>1995</td>
</tr>
<tr>
<td>22.220 Management</td>
<td></td>
<td>22.201</td>
<td>14 points</td>
<td>1994</td>
</tr>
<tr>
<td>62.681 Biology and Genetics of Microorganisms</td>
<td></td>
<td>62.201</td>
<td>14 points</td>
<td>1995</td>
</tr>
<tr>
<td>62.682 Human Genetics</td>
<td></td>
<td>62.253</td>
<td>14 points</td>
<td>1994</td>
</tr>
<tr>
<td>22.682 Clinical Biochemistry</td>
<td>22.681</td>
<td>22.381</td>
<td>16 points</td>
<td>1995</td>
</tr>
<tr>
<td>62.684 Medical Microbiology and Immunology</td>
<td>62.681,22.681</td>
<td>62.304</td>
<td>20 points</td>
<td>1996</td>
</tr>
<tr>
<td>XX.688 Research Project</td>
<td>62.681,22.681</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* This timetable is not actually part of the calendar regulations and may be reviewed in 1994 in light of students comments on workloads.
22.682 Clinical Biochemistry
16 points
The biochemistry of human tissues and biochemically analysed, with particular emphasis on disease detection. Quality control and reference values. Common diseases of liver and kidney and disturbances in fluid and acid-base balance.

62.683 DNA Technology
16 points
Studies of nucleic acid structure and enzymology including hybridization, restriction, modification, ligation and sequence analysis. Other topics will include lambda phage, plasmids, insertion sequences, transposons and their use in genetic engineering. Gene regulation and directed genetic change using site-specific mutagenesis will also be examined. In addition legal and medical aspects will be addressed.

62.684 Medical Microbiology and Immunology
16 points
The principles of immunology, including cell and antibody mediated immunity, the major histocompatibility complex, the hypersensitivities, immunodeficiency and autoimmunity; application to the diagnosis of infection.
The major bacterial pathogens of humans in terms of the organisms, their habitats, modes of transmission, disease patterns and laboratory diagnosis.
The structure, classification, propagation, assay and transmission of the major viruses of humans. Immunity to viruses and the laboratory diagnosis of viral infections.

If you have any queries, please contact:
Department of Medical Laboratory Science
Massey University
FALMERSTON NORTH
Fax: (06) 350 4012

NEW PRODUCTS AND SERVICES

NEW ELECTRONIC MICROTONES

"Carl Zeiss has introduced its new line of MICROM electronic microtomes, which further enhances its position as the technology leader in microtomy. Two new models are now available with the latest advances in state-of-the-art electronic microtomy: the HM 340E, a multi-purpose rotary microtome for routine and research applications, and the HM 440E sliding microtome."

"Epiclone" is the first sliding microtome with motorized vertical specimen movement; specimen retraction in the sledges return mode; automatic section thickness control; one button for up/down movement, fine feed and trimming; pre-selected coaxial fine/trim feed; and an integrated section waste tray.

The increased speed and convenience of these innovative microtomes will improve the productivity of all laboratories engaged in specimen sectioning.

For complete details on the above, please contact:
Carl Zeiss (NZ) Ltd., 5 Wakefield Street, Lower Hutt, New Zealand. Tel: (04) 566 7601 Fax: (04) 566 7501

HIGH PURITY WATER FROM REVERSE OSMOSIS SYSTEM

Between 60 and 200 litres per hour of high purity water, ideal for central systems requiring up to 5000 litres per day, are produced by a new reverse osmosis system now being marketed by Medic Corporation Limited.

The Barnstead UTROpure system offers four different RO membranes and is ideally suited as a central supply to a large laboratory, small manufacturing plant or food processing company where it may be either bench or wall mounted, often in a ceiling or service area. The unit can then automatically control a reservoir which in turn feeds to optional polishing units located on different floors of the building.

The system offers up to 50 percent feedwater recovery and is microprocessor controlled, allowing for fully automatic and unattended operation. It incorporates an LCD printout and all functions are monitored, with status lights indicating: the requirement to change the pre filter, to service the membrane, a full reservoir, high/low inlet pressure, salt rejection, and product and reject flow rate, to name but a few. Running costs are lower than for most other water purification systems.

Medic Corporation will initially conduct a water analysis and complete a questionnaire which they forward to Barnstead who give their recommendation and provide a one year guarantee, including the membrane. Medic Corporation will then do the installation and commissioning free of charge and provide a full back-up by their service staff who are all trained by Barnstead in the U.S.A.

Further information is available from Medic Corporation Limited, Scientific and Industrial Division, Private Bag, Lower Hutt. Tel (04) 569 3539.

CSL BLOOD BANKING REAGENTS

CSL has a very extensive range of blood grouping reagents, both human and monoclonal (under the tradename of "Epiclone"). The majority of the blood grouping reagents are tested by methods recommended by the US Office of Biologicals Research and Review (OBRR) US to ensure that they meet the potency and avidity requirements of that office.
The range includes the following products — ABO grouping reagents — Epiclone Anti-A, Anti-B, Anti-A,B (all murine monoclonal), Anti-H and Anti-A1, Rh blood grouping reagents including — Anti-D (potentiated), Rh Control, Anti-C, Anti-c, Anti-C*, Anti-E, Anti-e, Anti-CDE as well as two Anti-D monoclonal reagents — Epiclone Anti-D(IgM) and Epiclone Anti-D(IgG).
Liquichek™ Unassayed Chemistry Control

Stability.
Liquichek™ Unassayed Chemistry Control offers a rock solid five day open vial stability for all constituents, including enzymes and CO₂, yet it is sensitive to changes in your testing system. Together with our two year shelf life, Bio-Rad's new Liquichek™ Unassayed Chemistry Control provides the consistent, long term quality control performance you've been looking for.

Confidence.
Liquichek™ Unassayed Chemistry Control, with its 68 constituents, does not contain organic solvents or glycols, so it's easier on your analyzer and compatible with most testing methods. And because our product is made using human serum, it will be free of the biases frequently seen in controls made from animal sera. Bio-Rad's new Liquid Chemistry Control is supplied ready-to-use, with no complicated pre-thawing required.

Support.
At Bio-Rad, we are committed to delivering the support you need to monitor your clinical chemistry testing effectively, regardless of test method or instrumentation. Thousands of customers use our state-of-the-art QC program and technical support services to ensure the accuracy and precision of their test results. You can now purchase a Chemistry Control that combines the convenience of liquid with the unparalleled stability and quality you come to expect from Bio-Rad.

Liquichek™ Unassayed Chemistry Control

All the control you need.

BIO-RAD

Other reagents are also available to perform specific blood grouping tests and techniques. For further details contact George Bongiovanni, MEDICA PACIFICA LTD, PO. BOX 24-421, Royal Oak, Auckland. Phone (09) 625 5261, Fax (09) 625 4396, Mobile (025) 974 913.

AIR SAMPLER ENSURES ENVIRONMENTAL HEALTH

Determination of airborne micro-organisms, required by regulations in some areas, can now be achieved with an air sampler available from Medic Corporation Limited.

Manufactured by Sartorius AG, a German manufacturer of membrane filters and electronic balances, the air sampler is essentially a smart vacuum cleaner, able to measure the amount of air it samples and then adjust its a.c. motor up or down to ensure an exact volume of air is sampled over a specified time.

The air is drawn in through a gelatin filter with a three micron pore size. Because gelatin is naturally moist and sticky, airborne microbes are retained by a combination of sieving out and sticking to the filter. In addition, the moistness of the gelatin filter keeps the microbes viable, even when sampling for longer periods in environments where the user expects to find very few airborne micro-organisms.

The filter can then be processed by two different methods: direct placement of the gelatin filter on a solid culture medium (direct method), or dissolution of the gelatin filter (indirect method). The indirect method is particularly recommended when inhibitors, such as antibiotics or disinfectants, have to be removed. It is the only air sampler validated for phage and viruses.

In the medical field, the detection of airborne pathogens is of prime importance. Airborne microbes can cause life-threatening diseases. This is especially the case in operations entailing an extremely high risk of post-operative wound infection by airborne microbes, treatment of severe burns, intensive care and treatment of allergies.

Further information is available from Medic Corporation Limited, Scientific and Industrial Division, Private Bag, Lower Hutt. Tel (04) 569 3539.

DIAGNOSTIC LABORATORY FIRST TO GAIN QUALITY AWARD

Diagnostic Laboratory, New Zealand's largest medical testing laboratory, has become the first in the country to gain the internationally recognised ISO 9002 accreditation for quality assurance.

Diagnostic Laboratory principal technologist Dennis Reilly, who is responsible for the laboratory's quality assurance programme, says the accreditation is a milestone for a New Zealand medical laboratory.

"It means that as a laboratory, we've reached an international standard," said Mr Reilly. "This is the top of the line in quality accreditation of medical laboratories." He said Diagnostic had gained the accreditation in all departments — Microbiology, Haematology, Immunology, Cytology, Histopathology, Clinical Biochemistry, Endocrine/Radioassay and Extra Laboratory (Near Patient) Testing.

Diagnostic Laboratory has been registered with accreditation agency Telarc since May 1983 and has been working towards the ISO 9002 accreditation for the past two years.

Mr Reilly said Telarc had used the ISO 9000 series standards as a basis to develop a specific code of quality assurance for medical laboratories known as the New Zealand Code of Laboratory Management Practice. The code covered quality assurance in all aspects of a laboratory's work.

"It looks at the whole system — how specimens are collected, bringing specimens into the laboratory, processing steps, staff training and customer service and satisfaction levels.

"The accreditation looks at the policies and procedures we have in place, how we implement those and the quality audits we carry out to ensure standards are maintained." He said the accreditation also covered documentation of company structure, lines of reporting, job descriptions and procedures.

"Everything we do is written down in a manual — from administration, personnel, computer usage and training methods to all laboratory procedures."

Mr Reilly said Telarc reassessed organisations every two years but the organisations themselves were required to do internal quality audits to maintain standards.

Diagnostic Laboratory is New Zealand's largest medical testing laboratory and has more than 315 staff. It operates solely in the greater Auckland region with a main laboratory in Symonds Street, Auckland and more than 55 rooms from Whangaparaoa in the north to Pukekohe in the south.

Contact: Dennis Reilly, Diagnostic Laboratory, Ph 357 4100.

BLOOD BANK SEROLOGY DIAMED-ID MICROTYPEING SYSTEM

The new DiaMed-ID Microtyping System is now installed in over 4000 laboratories worldwide including some New Zealand laboratories.

The patented gel centrifugation technology offers a new level of standardisation in blood bank serology as well as improved quality of performance and labour saving test logistics.

Specific antisera is supplied in a gel matrix and sealed in each of the six microtubes in a plastic card. Test cells or patient samples are added to the gel columns and the card is centrifuged. Agglutinates are trapped in the gel and non-reactive cells are centrifuged to the bottom of the tube. The results are stable for weeks and can be photocopied.

No cell washing is required in any facet of testing. The simple test protocols lead to precise, standardised results.

Cards are available with tests for cell and serum grouping, antibody detection and investigation, crossmatching and other serological testing. Profiles are available for testing antenatal, neonatal, donors, pretransfusion testing, paternity and forensic testing. Most traditional test methods including IAT, DAT, enzymes, saline, multitemperature testing, filtrations, elutions etc. are available.

For further information contact DiaMed Toll free ph: 0800 441 525, PO. Box 222, Surrey Hills, Victoria, 3127, Australia.
DiaMed is proud to announce the New Zealand release of the ID-Microtyping system for blood bank serological testing.

The DiaMed system is the original patented gel method for all aspects of blood bank testing of red cells and antibodies.

Major features are:

- Significant improvement in quality and confidence of testing and validation.
- Improved sensitivity and specificity over other methods.
- Standardised, operator independent results.
- Results stable for weeks.
- Simple protocols.
- No cell washing in any testing.
- Significant labour savings with improved laboratory flexibility.
- Low capital cost hardware.
- Manual, semi-automated and fully automated systems.
- Predispensed, sealed reagents with long shelf life at room temperature.
- Standard methods include ABO/Rh Grouping, Rare Antigens, IAT, DAT, Crossmatching, Investigations, Monospecifics, Subgroups, Antenatals, Neonatals, Donor Unit Group Checking.

For further information contact DiaMed toll free ph: 0800 441 525, P.O. Box 222, Surrey Hills, Victoria, 3127, Australia.
The right diagnosis down to a T

Troponin T is a unique biochemical marker for the diagnosis of myocardial damage due to its high level of sensitivity, specificity and large diagnostic time window.

Multicentre studies covering patients at more than 80 cardiac centres confirm that troponin T not only diagnoses patients with large sized infarcts, it is also capable of differentiating minor myocardial damage in unstable angina patients. A truly major advancement in cardiac patient care.

TNT
Heart Diagnosis System